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ABSTRACT: A full factorial design of experiments and response surface methodology were used to investigate the effects of formula-

tion, processing, and operating temperature on the viscoelastic properties of vapor-grown carbon nanofiber (VGCNF)/vinyl ester

(VE) nanocomposites. Factors included VGCNF type (pristine, oxidized), use of a dispersing agent (DA) (no, yes), mixing method

(ultrasonication, high-shear mixing, and a combination of both), VGCNF weight fraction (0.00, 0.25, 0.50, 0.75, and 1.00 parts per

hundred parts resin (phr)), and temperature (30, 60, 90, and 120�C). Response surface models (RSMs) for predicting storage and

loss moduli were developed, which explicitly account for the effect of complex interactions between nanocomposite design factors

and operating temperature on resultant composite properties; such influences would be impossible to assess using traditional single-

factor experiments. Nanocomposite storage moduli were maximized over the entire temperature range (�20% increase over neat VE)

by using high-shear mixing and oxidized VGCNFs with DA or equivalently by employing pristine VGCNFs without DA at �0.40 phr

of VGCNFs. Ultrasonication yielded the highest loss modulus at �0.25 phr of VGCNFs. The RSMs developed in this investigation

may be used to design VGCNF-enhanced VE matrices with optimal storage and loss moduli for automotive structural applications.

Moreover, a similar approach may be used to tailor the mechanical, thermal, and electrical properties of nanomaterials over a range

of anticipated operating environments. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 234–247, 2013
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INTRODUCTION

Polymer nanocomposites have promising physical and mechani-

cal performance in many applications.1–3 In the automotive and

aerospace industries, thermoset polymer nanocomposites are

attracting increased attention as their exceptional multifunc-

tional properties are discovered.4 Carbon nanotubes, carbon

nanofibers, graphene platelets, silica nanoparticles, and nano-

clays are often used as nanoreinforcements in these materials.5

Recently, vapor-grown carbon nanofibers (VGCNFs) have been

used to reinforce a variety of polymer matrices.6

Successful attempts have been made to improve composite

properties such as thermal conductivity,7–10 dielectric proper-

ties,11 electrical conductivity,8,12–14 electromagnetic interference

shielding,15–17 and flame retardancy18 by incorporation of

VGCNFs in the matrix. However, composite mechanical prop-

erty improvements have largely been compromised by poor

nanofiber dispersion in the matrix, inadequate nanofiber align-

ment, and weak nanofiber-matrix interfacial adhesion.6 Differ-

ent attempts have been made to improve nanofiber dispersion

through surface functionalization,19–21 use of a dispersing

agent,22 or utilizing different mixing methods.23–26 However,

such studies have largely considered the isolated effect of only

one fabrication/processing factor. Hence, the results obtained

using a one-at-a-time (single factor) experimental approach ex-

plicitly neglect the complex interactions between factors. Opti-

mal nanocomposite fabrication requires the use of a systematic

statistical approach, such as design of experiments27 and

response surface methodology,28 to understand the interactions

between different formulation, processing, and other factors and

their effects on material properties. The significance of using

design of experiments and response surface modeling in com-

posite materials research has received increased recognition.29

For example, such statistical methods have been used in the
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design, mechanical characterization, and optimization of sand-

wich composites,30–32 polymers, and polymer nanocompo-

sites.33–38

VGCNF/vinyl ester (VE) nanocomposites are promising mate-

rials for use as nanoenhanced and/or multifunctional matrices

in continuous fiber or laminated composite structures because

of their enhanced material properties in comparison to matri-

ces composed of neat VE. For example, the matrix can be stiff-

ened by VGCNF addition without generating a higher crosslink

density. Their tensile, flexural,39 impact,40 and high-strain-rate

behavior41 have been studied. The effects of four formulation

and processing factors (VGCNF type, the use of a dispersing

agent, mixing method, and VGCNF weight fraction) on room

temperature storage and loss moduli of VGCNF/VE nanocom-

posites were previously investigated by the authors using

design of experiments and response surface modeling.42 Ther-

mal behavior may also be characterized and optimized to

provide a more comprehensive design, since the temperature-

dependent material response plays a crucial role during in-

service performance. Nanoreinforcements may significantly

affect the thermomechanical behavior of the cured nanophased

matrix, including its glass transition temperature (Tg) and

thermal expansion behavior.43–47

Polymer viscoelastic behavior is efficiently studied using

dynamic mechanical analysis (DMA).48 In this technique, a

complex modulus comprised of a real elastic part (storage mod-

ulus) and an imaginary energy dissipative part (loss modulus) is

measured. The storage modulus is proportional to the Young’s

modulus of the material. The loss modulus is one indicator of a

material’s energy absorption capability. This capability together

with material’s damping characteristics is utilized for reducing

vibration and/or noise in heavy machinery, aircraft, and other

vehicle applications.49 An automotive structure needs to possess

both high stiffness and high energy absorption capability to

ensure structural rigidity and crashworthiness. Apart from loss

modulus, impact strength, impact toughness, fracture tough-

ness, strain energy release rate, and ductility have also been

associated with changes in material’s energy absorption

characteristics.50

In the current study, a robust statistical design of experiments

approach is employed to investigate the coupled effects of for-

mulation and processing factors and operating temperature on

the viscoelastic properties of VGCNF/VE nanocomposites.

Response surface models (RSMs) are developed for predicting

nanocomposite storage and loss moduli as a function of

VGCNF type, the use of a dispersing agent, mixing method,

VGCNF weight fraction, and operating temperature. The inclu-

sion of temperature as an additional independent variable repre-

sents a substantial increase in the experimental design space

from our previous study.42 Modest changes in operating tem-

perature consistent with typical automotive applications can

have a profound effect on the viscoelastic response of polymer

nanocomposites; this is of critical importance when assessing

time-dependent material behavior and crashworthiness at ele-

vated temperatures. The RSMs developed in this investigation

may be used to design VGCNF-enhanced VE matrices with

optimal storage and loss moduli for automotive structural

applications. More generally, response surface methodologies

may readily be used to tailor the mechanical, thermal, and elec-

trical properties of multifunctional nanocomposites over a range

of anticipated operating environments.

EXPERIMENTAL

Statistical Experimental Design

A general mixed-level full factorial design was utilized to sys-

tematically investigate and model the effects of three qualita-

tive and two quantitative factors on the VGCNF/VE nanocom-

posite storage and loss moduli. The factors and their levels

were selected to address two critical aspects of nanocomposite

fabrication, i.e., nanofiber dispersion and nanofiber-matrix

interfacial adhesion. Since the current study represents an

extension of the work performed by Nouranian et al.42 no

screening experiments were conducted . The qualitative factors

included the VGCNF type (designated as A) in two levels

(pristine, oxidized), the use of dispersing agent (B) in two lev-

els (no, yes), and the mixing method (C) in three levels (ultra-

sonication, high-shear mixing, and a combination of both).

Moreover, the two quantitative factors were VGCNF weight

fraction (W) in five levels (0.00, 0.25, 0.50, 0.75, and 1.00

parts per hundred parts resin (phr)) and temperature (T) in

four levels (30, 60, 90, and 120�C). One long-term objective

was to ensure that the viscosity of the nanoreinforced resin

remained relatively low in order to permit future resin infu-

sion into continuous fiber preforms. VGCNF weight fractions

in excess of 1.00 phr can lead to VGCNF/VE blends with a

paste-like consistency and were not considered here. All sam-

ples used the same starting resin and curing protocol. An ele-

vated curing temperature was employed to enhance the overall

reaction rate, increase diffusion within the crosslinking matrix,

and facilitate specimen preparation times. The current curing

protocol was based upon recommendations by the resin man-

ufacturer. The experimental design factors and their respective

levels are shown in Table I. The temperature levels were

selected in equally spaced intervals ranging from 30�C to

120�C, all below the material’s glass transition temperature.

Storage and loss moduli were selected as the responses of in-

terest. Data analyses were performed using the SAS
VR

V9.2

statistical analysis software.

Nanocomposite Materials and Dynamic Mechanical Analysis

A commercial, 33 wt % styrene, liquid VE resin (Derakane 441-

400, Ashland, Covington, KY) was employed for the matrix. It

was cured by free radical addition polymerization using methyl

ethyl ketone peroxide (MEKP) (US Composites) as the initiator.

A 6% solution of cobalt naphthenate (North American Compo-

sites) promoter was used to accelerate MEKP decomposition.

Two commercial air release additives, BYK-A515 and BYK-A555

(BYK Chemie, GmbH), were employed to remove air bubbles

that were introduced during mixing of the viscous VGCNF/VE

blend. The pristine and oxidized VGCNFs (PR24-XT-LHT and

PR24-XT-LHT-OX, respectively, both from Applied Sciences)

were used as carbon nanofibers of choice. Nanofiber surface ox-

idation is commonly employed to improve the interfacial adhe-

sion between the nanofibers and the matrix.21 Specimens were
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prepared using the general formulation outlined in Table II,

where the amounts of VGCNFs and dispersing agent, BYK-9076

(BYK Chemie, GmbH), were employed at the particular factor

level combinations dictated by the experimental design. The

ratio of the dispersing agent amount to the amount of VGCNFs

was 1 : 1 by weight to maximize its efficiency. Test specimens

were prepared according to the protocol described previously.42

A schematic of this protocol is given in Figure 1.

Three separate nanocomposite specimens were prepared for

each treatment combination (combination of various factor

levels). Specimens were polished before testing and the final av-

erage dimensions were 17.5 � 12.5 � 3.5 mm3. Nanocomposite

storage and loss moduli were measured as a function of temper-

ature with a Dynamic Mechanical Analyzer in a single cantilever

mode at an amplitude of 15 lm.42 The frequency (10 Hz) and

a heating rate (5 C/min) were held fixed and storage and loss

moduli were measured over a temperature range of 27–160�C.
While a frequency of 1 Hz is often employed for the DMA test

of a polymer specimen under a temperature sweep, we were

motivated to use 10 Hz based on previous work by Li et al.51

on nanoreinforced epoxy composites.

RESULTS AND DISCUSSION

The average storage and loss moduli for each treatment com-

bination (run) for a total of 240 (2 � 2 � 3 � 5 � 4) treat-

ment combinations are given by Nouranian.52 The storage

Table II. Nanocomposite Formulations Based on the Experimental Design

Ingredient Weight (g)

Derakane 441-400 100

Cobalt naphthenate 6% 0.20

BYK-A 515 0.20

BYK-A 555 0.20

BYK-9076a 1 : 1 ratio with
respect to VGCNF

VGCNF (pristine or oxidized) 0.00/0.25/0.50/0.75/1.00

MEKP 1.00

Note: all ingredients were used in fixed amounts, except for the dispers-
ing agent and the VGCNFs. These components were added in amounts
directed by the design.
aThe dispersing agent was added in an amount directly proportional to
the VGCNF weight.

Table I. Factors Used in This Study and Their Levels

Levels

Factor
designation Factor 1 2 3 4 5

A VGCNFa type Pristine Oxidized – – –

B Use of dispersing agent No Yes – – –

C Mixing method USb HSc HS/USd – –

W VGCNF weight fraction (phre) 0 0.25 0.50 0.75 1.00

T Temperature (�C) 30 60 90 120 –

aVapor-grown carbon nanofiber, bUltrasonic mixing, cHigh-shear mixing, dCombined high-shear and ultrasonic mixing, eParts per hundred parts resin.

Figure 1. Schematic of the specimen preparation protocol.
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moduli fell in the range S ¼ 550–2766 MPa with an average

standard deviation of 50–100 MPa. The loss moduli were in

the range L ¼ 41–208 MPa with an average standard deviation

of 5–10 MPa. The treatment combination responses for differ-

ent temperatures at fixed levels of the other factors were all

collected from the experimental data obtained for the storage

and loss moduli as a function of temperature in the range of

27–160�C. Forty-eight treatment combinations with a VGCNF

weight fraction of 0.00 phr belonged to the neat VE. These

had all the same response values regardless of other factor lev-

els. For example, the VGCNF type and mixing method are

irrelevant at 0.00 phr VGCNF and no dispersing agent is used

in the neat resin formulation. Therefore, only 49 actual DMA

measurements were performed for the 240 treatment combina-

tions. The neat VE was considered as part of the design and

not as a control factor since it was of critical interest to cap-

ture the neat VE’s behavior in the RSMs.

Storage Moduli

Storage modulus data were first subjected to the analysis of

variance (ANOVA) method27 before predictive RSMs were

developed. Since there was only one run per treatment combi-

nation (i.e., only one batch of the material was prepared based

on the dictated factor level combinations) no measure of pure

(experimental) error was obtained. Therefore, four- and five-

factor interactions (the two highest order interactions) were

assumed to be negligible to construct an error term for the

ANOVA. The ANOVA results are shown in Table III, where

the main, two-, and three-factor interaction effects are

Table III. Analysis of Variance (ANOVA) for the Storage Modulus Data

Source of variation
Degrees
of freedom Sum of squares Mean square F-Value P-Valuea

Model 141 81807482.4 580194.9 126.3 <0.0001

A: VGCNF type 1 28427.3 28427.3 6.2 0.0146

B: Use of dispersing agent 1 49020.4 49020.4 10.7 0.0015

C: Mixing method 2 2466492.2 1233246.1 268.4 <0.0001

W: VGCNF weight fraction 4 6441727.2 1610431.8 350.5 <0.0001

T: Temperature 3 69692014.4 23230671.5 5056.4 <0.0001

A�B 1 546.0 546.0 0.1 0.7310

A�C 2 46155.8 23077.9 5.0 0.0084

A�W 4 35429.2 8857.3 1.9 0.1118

A�T 3 21266.7 7088.9 1.5 0.2082

B�C 2 137845.4 68922.7 15.0 <0.0001

B�W 4 50122.7 12530.7 2.7 0.0335

B�T 3 9973.9 3324.6 0.7 0.5402

C�W 8 694447.1 86805.9 18.9 <0.0001

C�T 6 767507.3 127917.9 27.8 <0.0001

W�T 12 426069.7 35505.8 7.7 <0.0001

A�B�C 2 114141.0 57070.5 12.4 <0.0001

A�B�W 4 74059.2 18514.8 4.0 0.0046

A�B�T 3 6214.9 2071.6 0.5 0.7172

A�C�W 8 40655.1 5081.9 1.1 0.3658

A�C�T 6 26980.3 4496.7 1.0 0.4438

A�W�T 12 46375.1 3864.6 0.8 0.6083

B�C�W 8 256564.4 32070.6 7.0 <0.0001

B�C�T 6 78605.2 13100.9 2.9 0.0133

B�W�T 12 12397.4 1033.1 0.2 0.9968

C�W�T 24 284444.4 11851.9 2.6 0.0006

Error 98 450246.0 4594.4 – –

Total (corrected) 239 82257728.4 – – -

Other Model Statistics

Mean: 1929.2 R2: 0.995

Coefficient of variation: 3.5% Standard deviation: 67.8

Note: The underlined three-factor interactions are significant. The lower order significant interactions were not considered in the analysis, because
they are all contained in higher order interactions.
aValues less than 0.05 are considered significant in the analysis.
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displayed. Ordered F-tests53 were conducted on the factorial

effects starting from the highest order (three-factor) interac-

tions. The factorial effects with P-values less than a ¼ 0.05

(5% level of significance) were considered significant for this

analysis (Table III). a ¼ 0.05 is the standard and common

value used for statistical hypothesis tests. On this basis, five

three-factor interactions (all underlined in Table III) were con-

sidered significant. These included:

1. Interaction between the type of VGCNF (A), the use of

dispersing agent (B), and the mixing method (C), i.e.,

A�B�C;

2. Interaction between the type of VGCNF (A), the use of

dispersing agent (B), and the VGCNF weight fraction (W),

i.e., A�B�W;

3. Interaction between the use of dispersing agent (B), the

mixing method (C), and the VGCNF weight fraction (W),

i.e., B�C�W;

4. Interaction between the use of dispersing agent (B), the

mixing method (C), and the temperature (T), i.e.,

B�C�T;

5. Interaction between the mixing method (C), the VGCNF

weight fraction (W), and the temperature (T), i.e.,

C�W�T.

Most of the main effects and two-factor interactions in Table

III were not ‘‘clean,’’ meaning they were completely contained

in higher-order significant three-factor interactions. Therefore,

they were not further analyzed even when their P-values were

less than 0.05. The only clean two-factor interaction, the A�T

interaction, was not significant (P-value ¼ 0.2082 > 0.05).

The two quantitative factors, VGCNF weight fraction (W) and

temperature (T), were used to generate the RSMs. Twelve dif-

ferent three-dimensional (3D) response surfaces could be gen-

erated from all combinations of the qualitative factors (2 � 2

� 3 ¼ 12 combinations, where the numbers in the left-hand

side of the equality denote factor levels). These responses

would all be continuous functions of VGCNF weight fraction

and temperature. However, analysis of the significant A�B�C

interaction, where all three factors are qualitative, can be used

to determine the significant factor combinations out of the 12

total combinations. This permits a reduction of the total

Table IV. Multiple Comparison Results for the Mean Storage Modulus Data Using Least Significant Difference (LSD) for the Interaction Between the

VGCNF Type, the Use of Dispersing Agent, and the Mixing Method (A3B3C)

t-Grouping

Least squares
mean values
for the storage
modulus data (MPa) VGCNF type (A)

Use of dispersing
agent (B)

Mixing
method (C)

Ma 2026.2 Oxidized No HSb

M

N M 2021.9 Pristine No HS/USc

N M

N M 2017.0 Pristine Yes HSd

N M

N M 2016.5 Oxidized No HS/US

N M

N M 2006.3 Pristine Yes HS/US

N M

N M 1994.2 Oxidized Yes HS

N

N O 1980.7 Oxidized Yes HS/US

O

O 1943.9 Pristine No HS

P 1883.8 Oxidized Yes US

Q 1779.1 Pristine Yes US

Q

Q 1741.8 Pristine No US/US

Q

Q 1739.3 Oxidized No US

Each group of data, i.e., S1, S2, and S3, results in one response surface.
aLeast squares mean values with the same letters are not significantly different from each other.
bHigh-shear mixing.
cCombined high-shear and ultrasonic mixing.
dHigh-shear mixing.

S2

S3

S1
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number of generated response surfaces. All of the other signifi-

cant three-factor interactions involved quantitative factors (i.e.,

VGCNF weight fraction and temperature). Since these were al-

ready considered in the response surfaces, they were not fur-

ther analyzed.

Fisher’s protected least significant difference (LSD) multiple

comparisons28 were conducted at a ¼ 0.05 on the mean values

associated with the A�B�C interaction in order to isolate sig-

nificant qualitative factor level combinations. These results

appear in Table IV, where the mean values associated with each

‘‘VGCNF type/dispersing agent/mixing method’’ combination

are compared with the mean values for the other combinations.

In the LSD comparisons, an LSD value is calculated28 and t-

tests are run on pair-wise differences between the mean values.

Calculated t-values greater than the LSD value define which dif-

ferences are significant. These comparisons of the mean values

are better represented by a standard graphical format repre-

sented in Table IV. When two mean values are compared, only

those with different designated letters (M, N, O, P, and Q) in

their t-grouping column of Table IV are significantly different

from each other. The letters in the t-grouping column can com-

prise one, two, or several subcolumns. For example, the combi-

nation ‘‘pristine nanofibers/no dispersing agent/combination of

high-shear mixing and ultrasonication (HS/US)’’ has letters M

and N in its t-grouping column. Therefore, its associated mean

storage modulus is significantly different from the mean storage

modulus for the combination ‘‘pristine nanofibers/no dispersing

agent/HS,’’ which has only the letter O in its t-grouping column.

If a single letter was common between the two distinct qualita-

tive factor level combinations, then only an insignificant differ-

ence exists in their mean storage moduli. This suggests that a

single RSM can be used to represent both factor level

combinations.

Following similar arguments, the first eight combinations in

Table IV, i.e., HS and HS/US combinations, are ‘‘chained’’ in

the t-grouping column as evident by the uninterrupted linking

of the rows by the letters. This means that most mixing com-

bination pairs have similar mean storage moduli. Therefore,

the data associated with the first eight combinations can be

‘‘grouped’’ into one set of mean storage modulus data for the

purpose of response surface modeling. This is designated by

the group S1 in Table IV. The same is true for the last three

combinations involving ultrasonication (group S3 in Table IV).

The combination of oxidized VGCNF/dispersing agent/US

(group S2 in Table IV) is the only combination differing sig-

nificantly from the other combinations involving ultrasonica-

tion. Therefore, three separate response surfaces were generated

for the data associated with the qualitative factor combinations

(Table IV): (1) grouped HS and HS/US (S1), (2) oxidized

VGCNF/dispersing agent/US (S2), and (3) grouped US exclud-

ing S2 (S3). Hence, the 12 possible response surfaces were

reduced to only three, simplifying data analysis and subse-

quent modeling. The predictions of one of these three

response surfaces can be used for any desired combination of

factor levels as long as that combination belongs to the group

(Table IV).

A general cubic response surface model with two independent

variables (X1 and X2) can be expressed as:

Yi ¼ b0 þ
X2

i¼1

biXi þ
X2

i¼1

biiX
2
i þ b12X1X2þ

þ
X2

i¼1

biiiX
3
i þ b112X

2
1X2 þ b122X1X

2
2 þ ei;

(1)

where Yi is the dependent variable, b0 is the intercept, all the

other b’s are model parameters, and ei is the model error term.

Here, the VGCNF weight fraction (X1 ¼ W) and temperature (X2

¼ T) were independent variables and the storage modulus (Yi ¼
S) was the dependent variable. Cubic equations were fitted to the

mean storage modulus data through backward elimination.54

The insignificant model terms were removed to further refine the

model. This involved conducting partial t-tests for the parame-

ters by comparing their P-values, which are associated with their

calculated t-values. Those parameters with P-values greater than

0.05 were removed. However, based on the ‘‘hierarchy princi-

ple,’’54 the lower order terms, which are completely contained in

significant higher order terms, were retained in the models.

These regression analysis results are summarized in Table V, where

the model parameters, their estimates, their associated t- and

P-values,55 and R2 and adjusted R2 values are shown. Parameters

with P-values less than a ¼ 0.05 were considered significant model

terms. The t-values are given for reference purposes.

Based on the LSD multiple comparison results in Table IV and

regression analyses in Table V, the three RSMs obtained are

expressed as:

S1 ¼ 2231:2þ 2567:3W þ 0:9T � 5025:9W 2 � 10:6WT

� 0:1T 2 þ 2678:7W 3 � 0:07WT 2;
(2)

S2 ¼ 2398:4þ 1299:7W � 4:3T � 1341:1W 2 þ 7:0WT

� 0:07T2 þ 8:1W 2T � 0:1WT 2;
(3)

S3 ¼ 2439:1þ 1384:0W � 4:3T � 1355:4W 2 � 4:1WT

� 0:07T2 þ 14:0W 2T � 0:08WT 2;
(4)

where Si is the storage modulus (i ¼ 1,2,3 representing the

groups S1, S2, and S3 in Table IV), W is the VGCNF weight

fraction, and T is the temperature. These models describe

97.8%, 99.6%, and 98.0% of the variations in the mean storage

modulus for the S1, S2, and S3 data groups, respectively

(Table V). Figure 2 shows a representative 3D response surface

plot of the storage modulus versus temperature and VGCNF

weight fraction for the group S1 (grouped HS and HS/US

data). The response surfaces for the other data groups can be

generated in the same fashion. The 3D surface in Figure 2 is

color coded to indicate regions of high (red) and low storage

modulus (blue). The contour plots are projected on the W-T

plane to show the regions with constant storage modulus. Over-

all, the storage modulus (or proportionally Young’s modulus)

decreases with increasing temperature, which is a common fea-

ture of polymers. Furthermore, an overall increase in the storage
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modulus is observed for the VGCNF/VE nanocomposites com-

pared to that of the neat VE. The latter result makes sense given

the reinforcing (stiffening) effect of VGCNFs.

Two-dimensional (2D) graphs were generated from the eqs.

(2)–(4) to better depict the predicted storage modulus as a

function of VGCNF weight fraction and temperature. The pre-

dicted storage moduli for the S1 data group are plotted as a

function of VGCNF weight fraction for different temperatures

in Figure 3. For a given temperature, the predicted storage

modulus increases with increasing amounts of VGCNFs up to a

local maximum around W � 0.40 phr. This represents an

increase of roughly 20% in the predicted storage modulus of

nanocomposites at a given temperature compared to that of the

neat VE (W ¼ 0.00 phr). The predicted storage moduli

remained relatively unchanged as the VGCNF weight fraction

was further increased. This suggests that nanocomposites pre-

pared with W � 0.40 phr of VGCNFs will maximize the storage

modulus over the entire temperature range of study. A local

maximum in the stiffness of polymer matrices with the addition

of nanoreinforcements is often reported in the literature.56,57

This phenomenon is for most part correlated to the level of

nanoreinforcement dispersion in the matrix. Better nanorein-

forcement dispersion translates into higher mechanical property

improvement of the polymer nanocomposite.46 At higher nano-

reinforcement weight fractions, the dispersion becomes much

Table V. Regression Analyses for the Storage Modulus Data

Parameter Degrees of freedom Parameter estimate Standard error t-value P-value

S1 (grouped high-shear mixing and coupled high-shear mixing/ultrasonication combinations) (R2 ¼ 0.978, adjusted R2 ¼ 0.977):

b0 1 2231.2 64.1 34.8 <0.0001

b1 1 2567.3 180.2 14.3 <0.0001

b2 1 0.9 1.9 0.5 0.6276

b11 1 �5025.9 377.5 �13.3 <0.0001

b12 1 10.6 3.2 3.4 0.0010

b22 1 �0.1 0.01 �8.1 <0.0001

b111 1 2678.7 48.1 10.8 <0.0001

b122 1 �0.07 0.02 �3.5 0.0006

S2 (ultrasonication with oxidized VGCNF and dispersing agent combination) (R2 ¼ 0.996, adjusted R2 ¼ 0.994):

b0 1 2398.4 104.5 23.0 <0.0001

b1 1 1299.7 292.8 4.4 0.0008

b2 1 �4.3 3.1 �1.4 0.1848

b11 1 �1341.1 243.0 �5.5 0.0001

b12 1 7.0 5.8 1.2 0.2506

b22 1 �0.07 0.02 �3.4 0.0051

b112 1 8.1 3.0 2.7 0.0183

b122 1 �0.11 0.03 �3.3 0.0060

S3 (grouped ultrasonication combinations excluding S2) (R
2 ¼ 0.980, adjusted R

2 ¼ 0.977):

b0 1 2439.1 127.8 19.1 <0.0001

b1 1 1384.0 357.9 3.9 0.0003

b2 1 �4.3 3.7 �1.2 0.2546

b11 1 �1355.4 297.0 �4.6 <0.0001

b12 1 �4.1 7.1 �0.6 0.5638

b22 1 �0.07 0.02 �3.1 0.0034

b112 1 14.0 3.6 3.9 0.0003

b122 1 �0.08 0.04 �2.1 0.0416

Figure 2. The predicted response surface and contour plots for the stor-

age modulus as a function of VGCNF weight fraction and temperature for

the S1 data group (grouped high-shear mixing and coupled high-shear

mixing/ultrasonication combinations). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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more difficult and the presence of nanoreinforcement agglomer-

ates is more prevalent.

In Figure 4, a representative scanning electron micrograph of

the fracture surface of a VGCNF/VE nanocomposite is shown.

At a VGCNF weight fraction of 1.00 phr, a number of large-size

nanofiber agglomerates can easily be located in the specimen.

From a pragmatic point of view, the nanocomposites with lower

VGCNF weight fractions will be less expensive, easier to process

due to lower VGCNF/VE resin blend viscosity, and may exhibit

higher strengths due to reduced numbers of large carbon nano-

fiber agglomerates than nanocomposites fabricated with higher

VGCNF content. The optimal VGCNF amount (W � 0.40) that

maximizes the predicted storage moduli over a range of temper-

atures can be compared to values from our previous room

temperature study (0.37 phr for pristine VGCNFs and 0.54 phr

for oxidized VGCNFs).42 Similar to the results shown in Fig-

ure 2, the predicted storage moduli decrease as the temperature

increases, which is the expected behavior for polymers. Similar

plots can also be generated for the S2 and S3 data groups.

The LSD comparisons (Table IV) and the developed RSMs [eqs.

(2–4)] illustrate that the S1 data group gives higher mean storage

modulus values over the entire temperature range compared to

the S2 and S3 data groups. This suggests that US does not increase

the storage modulus of the nanocomposites to the same degree as

HS or HS/US. Evidently, US is not as effective in dispersing

VGCNFs in the VE matrix as the other two mixing techniques.

The predicted storage moduli are plotted in Figure 5 as a func-

tion of VGCNF weight fraction for the S1, S2, and S3 data groups

(Table IV) at 30�C and 90�C. All three grouped data combina-

tions exhibit nearly the same behavior at 30�C [Figure 5(a)]. This

is consistent with the results obtained for the room temperature

analysis,42 where the storage modulus was independent of

the mixing method. As the temperature increases [Figure 5(b)],

the S1 data group gives markedly higher storage moduli over the

entire VGCNF weight fraction range than do the S2 and S3 com-

binations. This highlights the effectiveness of high-shear mixing

Figure 3. Predicted storage modulus as a function of VGCNF weight frac-

tion for different temperatures. The data belongs to the S1 data group

(grouped high-shear mixing and coupled high-shear mixing/ultrasonica-

tion combinations). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 4. A representative scanning electron micrograph of the fracture

surface of a VGCNF/VE nanocomposite specimen containing oxidized

VGCNFs, dispersing agent, and a VGCNF weight fraction of 1.00 phr, pre-

pared using coupled high-shear mixing/ultrasonication. Two nanofiber

agglomerates, roughly 30 and 70 lm in size, are circled.

Figure 5. Comparisons between predicted storage moduli for the S1

(grouped high-shear mixing and coupled high-shear mixing/ultrasonica-

tion combinations), S2 (ultrasonication with oxidized VGCNF and dis-

persing agent combination), and S3 data groups (grouped ultrasonication

combinations excluding S2) for temperatures (T) of (a) 30�C and (b)

90�C. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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in dispersing the VGCNFs in the VE matrix, resulting in

improved material properties at higher service temperatures.

The RSMs for the S1, S2, and S3 data groups can be used to

assess the effects of quantitative factors (W and T) on the pre-

dicted storage moduli. The LSD multiple comparisons in Table

IV are used to determine the qualitative factor levels resulting in

the optimal values for the storage moduli. On this basis, com-

paring the factor level combinations within the S1 data group

in Table IV reveals that the effects of HS and HS/US mixing

methods on the predicted storage moduli were not significantly

different from each other. Therefore, the HS mixing alone is

recommended for maximizing the storage modulus over the

entire temperature range (30–120�C). This provides added ben-

efits of fast and economical processing. Examining the HS

combinations in Table IV reveals that oxidized VGCNFs in the

absence of dispersing agent (factor level combination in row

one of Table IV) or pristine VGCNFs in the presence of dispers-

ing agent (factor level combination in row three of Table IV)

may be used to maximize the storage modulus over a range of

temperatures. VGCNF surface oxidation and use of the dispers-

ing agent affect storage modulus in a similar way when speci-

mens are prepared using HS mixing. The optimal combination

of factors may additionally depend on how they affect other

material properties such as strength.

Loss Moduli

The ANOVA27 was used to analyze the loss modulus data before

predictive RSMs were developed. A complete set of loss modu-

lus data pertaining to different treatment combinations are

given by Nouranian.52 Since only one batch was prepared for

Table VI. Analysis of Variance (ANOVA) for the Loss Modulus Data

Source of variation Degrees of freedom Sum of squares Mean square F-Value P-Valuea

Model 141 477367.9 3385.6 49.3 <0.0001

A: VGCNF type 1 12.2 12.2 0.2 0.6751

B: Use of dispersing agent 1 32.3 32.3 0.5 0.4949

C: Mixing method 2 9460.1 4730.1 68.8 <0.0001

W: VGCNF weight fraction 4 4900.9 1225.2 17.8 <0.0001

T: Temperature 3 397789.1 132596.4 1928.9 <0.0001

A�B 1 22.8 22.8 0.3 0.5659

A�C 2 672.3 336.2 4.9 0.0095

A�W 4 455.8 114.0 1.7 0.1660

A�T 3 86.4 28.8 0.4 0.7400

B�C 2 67.6 33.8 0.5 0.6131

B�W 4 173.3 43.3 0.6 0.6421

B�T 3 563.6 187.9 2.7 0.0478

C�W 8 4117.8 514.7 7.5 <0.0001

C�T 6 12349.7 2058.3 29.9 <0.0001

W�T 12 35027.6 2919.0 42.5 <0.0001

A�B�C 2 736.6 368.3 5.4 0.0062

A�B�W 4 97.1 24.3 0.4 0.8414

A�B�T 3 75.6 25.2 0.4 0.7772

A�C�W 8 1738.5 217.3 3.2 0.0032

A�C�T 6 1037.4 172.9 2.5 0.0263

A�W�T 12 318.9 26.6 0.4 0.9655

B�C�W 8 269.9 33.7 0.5 0.8602

B�C�T 6 1445.3 240.9 3.5 0.0035

B�W�T 12 626.3 52.2 0.8 0.6902

C�W�T 24 5291.1 220.5 3.2 <0.0001

Error 98 6736.9 68.7435 – –

Total (corrected) 239 484104.7 – – –

Other Model Statistics

Mean: 90.8 R2: 0.986

Coefficient of variation: 9.1% Standard deviation: 8.3

Note: The underlined three-factor interactions are significant. The lower order significant interactions were not considered in the analysis, because
they are all contained in higher order interactions.
aValues <0.05 are considered significant in the analysis.
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each treatment combination, there was no experimental error

associated with the loss modulus data. The four- and five-factor

interactions were assumed to be negligible in constructing an

error term for the ANOVA analysis. The ANOVA results are

shown in Table VI, where factorial effects were analyzed using

ordered F-tests53 starting from the three-factor interactions. Five

significant three-factor effects (underlined in Table VI) were iso-

lated by comparing the actual P-values of the factorial effects to

the level of significance a ¼ 0.05:

1. Interaction between the VGCNF type (A), the use of dis-

persing agent (B), and the mixing method (C), i.e.,

A�B�C;

2. Interaction between the VGCNF type (A), the mixing

method (B), and the VGCNF weight fraction (W), i.e.,

A�C�W;

3. Interaction between the VGCNF type (A), the mixing

method (C), and the temperature (T), i.e., A�C�T;

4. Interaction between the use of dispersing agent (B), the

mixing method (C), and the temperature (T), i.e.,

B�C�T;

5. Interaction between the mixing method (C), the VGCNF

weight fraction (W), and the temperature (T), i.e., C�W�T.

All of the significant two- and three-factor interactions involv-

ing factors A, B, C, W, and T were contained in significant

higher order interactions with the exception of the two-factor

interaction B�W. This interaction was not significant (P-value

¼ 0.6421 > 0.05), so the remaining two-factor interactions and

main effects were not further analyzed. The A�B�C qualitative

factorial interaction was significant. This interaction was ana-

lyzed to reduce the total number of generated response surfaces.

Furthermore, all of the other significant three-factor interactions

involved the quantitative factors, i.e., VGCNF weight fraction

(W) and temperature (T), which were considered in the

response surfaces. As a result, Fisher’s LSD multiple compari-

sons28 were conducted on the mean data to identify the signifi-

cant A�B�C factor level combinations. These are shown in

Table VII, where ‘‘VGCNF type/dispersing agent/mixing

method’’ combinations can be compared with one another. The

letters in the t-grouping column (M, N, O, and P) establish

relationships between the pairs of mean data.

Table VII. Multiple Comparison Results for the Mean Loss Modulus Data Using Least Significant Difference (LSD) for the Interaction Between the

VGCNF Type, Use of Dispersing Agent, and Mixing Method (A3B3C)

t-Grouping

Least squares
mean values for the
loss modulus data (MPa) VGCNF type (A)

Use of dispersing
agent (B) Mixing method (C)

Ma 102.15 Oxidized No USb

M

M 100.95 Pristine Yes US

M

M 97.75 Pristine No US

M

M 97.45 Oxidized Yes US

N 89.45 Oxidized No HS/USc

N

O N 89.05 Pristine No HSd

O N

O N 88.60 Oxidized Yes HS/US

O N

O N 87.60 Pristine Yes HS/US

O N

O N 86.50 Pristine Yes HS

O N

O N 85.80 Oxidized Yes HS

O

O P 84.20 Pristine No HS/US

P

P 79.90 Oxidized No HS

Each group of data, i.e., L1 and L2, results in one response surface.
aLeast squares means with the same letters are not significantly different from each other.
bUltrasonic mixing.
cCoupled high-shear and ultrasonic mixing.
dHigh-shear mixing.

L1

L2
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All four factor level combinations involving US alone gave the

most consistently high mean loss moduli (the first four factor

level combinations in Table VII). The last eight HS and HS/US

combinations are chained in the t-grouping column. Thus, all

12 combinations were grouped into two sets of mean loss

modulus data for use in response surface modeling. One set is

for specimens prepared using US (designated as L1) and the

second is for specimens prepared using HS and HS/US (L2).

The predictions for both of these response surfaces can be

used for any combination of factor levels. The only require-

ment is that the combination belongs to the associated group

(Table VII).

Cubic equations were fitted to the mean loss modulus data and

two RSMs were generated:

L1 ¼ �49:3þ 220:1W þ 5:3T � 435:6W 2 � 1:4WT

� 0:07T 2 þþ248:3W 3 þ 0:01WT2 þ 0:0003T 3;
(5)

L2 ¼ 11:8� 73:2W þ 2:7T þ 118:3W 2 � 0:6WT

� 0:04T 2 ��1:8W 2T þ 0:02WT 2 þ 0:0002T3;
(6)

where VGCNF weight fraction (W) and temperature (T) are in-

dependent variables and the loss modulus (Li, i ¼ 1,2) is the de-

pendent variable. Equations (5) and (6) pertain to L1 and L2

data groups (Table VII), respectively, where the insignificant

model terms in the original cubic equations were removed

through backward elimination invoking the hierarchy princi-

ple.54 The regression analysis results are given in Table VIII,

where b0 is the intercept, and the other b’s are model parame-

ters [see eq. (1)]. Parameters with P-values of less than a ¼
0.05 are considered significant model terms.

The two RSMs [eqs. (5) and (6)] describe 91.3% and 94.4% of

the variations in the mean loss modulus data for the L1 and L2

data groups (Table VII), respectively. Both response surfaces are

plotted in Figure 6, where regions of constant loss moduli are

projected onto the W-T plane. As can be seen in Figure 6(a,b),

the predicted loss moduli are a complex function of VGCNF

weight fraction and temperature. 2D graphs (Figures 7 and 8)

are used to assess the effects of VGCNF weight fraction and

temperature on the predicted loss moduli for the L1 and L2

data groups, respectively.

All nanocomposites pertaining to the US data combination

grouping (L1) gave equal or higher loss moduli than the neat

VE (W ¼ 0.00 phr) at all temperatures from 30�C to 120�C
[Figure 7(a)]. The predicted loss modulus increased with

increasing amounts of VGCNFs up to a local maximum occur-

ring at W � 0.25 phr [Figure 7(a)]. Beyond this point, the loss

moduli decreased slightly or leveled off at higher VGCNF

weight fractions. The increase in loss moduli at lower VGCNF

weight fractions (W < 0.25 phr) may be primarily due to inter-

facial slip occurring between the individual nanofibers and the

matrix, frictional sliding between entangled and interlocked

VGCNFs contained in agglomerates, and other dissipative mech-

anisms.50 Ultrasonication can result in poor nanofiber disper-

sion and increased numbers of nanofiber agglomerates.42 At

higher VGCNF weight fractions (W > 0.50 phr), the loss mod-

uli tended to decrease somewhat at lower temperatures. This

may be due to markedly reduced nanocomposite ductility

Table VIII. Regression Analysis for the Loss Modulus Data

Parameter Degrees of freedom Parameter estimate Standard error t-Value P-Value

L1 (grouped ultrasonication combinations) (R2 ¼ 0.913, adjusted R2 ¼ 0.903):

b0 1 �49.3 24.4 �2.0 0.0465

b1 1 220.1 36.2 6.1 <0.0001

b2 1 5.3 1.2 4.5 <0.0001

b11 1 �435.6 75.8 �5.8 <0.0001

b2 1 �1.4 0.6 �2.3 0.0255

b22 1 �0.07 0.02 �4.3 <0.0001

b111 1 248.3 49.8 5.0 <0.0001

b122 1 0.01 0.004 3.4 0.0013

b222 1 0.0003 0.00007 4.5 <0.0001

L2 (grouped high-shear mixing and coupled high-shear mixing/ultrasonication combinations) (R2 ¼ 0.944, adjusted R2 ¼ 0.941):

b0 1 11.8 17.1 0.7 0.4899

b1 1 �73.2 25.9 �2.8 0.0053

b2 1 2.7 0.8 3.3 0.0011

b11 1 118.3 21.5 5.5 <0.0001

b12 1 �0.6 0.5 �1.1 0.2567

b22 1 �0.04 0.01 �3.8 0.0002

b112 1 �1.8 0.3 �6.8 <0.0001

b122 1 0.02 0.003 7.0 <0.0001

b222 1 0.0002 0.00005 4.7 <0.0001
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resulting from increased VGCNF content. Conversely, the slight

increase in the loss modulus with increasing amounts of

VGCNFs at 120�C is likely attributable to changes in the VE

matrix ductility at elevated temperatures.

In contrast to the L1 group of specimens (US data combination

grouping), all VGCNF weight fractions for L2 specimens (HS

data combination grouping) exhibited predicted loss moduli

values that were lower than the neat VE at temperatures below

�90�C [Figure 7(b)]. This makes sense since HS or HS/US

yields better nanofiber dispersion, reduced numbers and sizes of

nanofiber agglomerates, and potentially less interfiber frictional

slipping. At higher temperatures, the predicted loss moduli for

all nanocomposites exceed those of the neat VE [Figure 7(b)].

In general, the higher the VGCNF weight fraction, the lower the

predicted loss modulus, except at elevated temperatures where

the energy dissipation is more matrix dominated. VGCNFs tend

to reduce nanocomposite ductility, especially for specimens con-

taining well-dispersed nanofibers at lower temperatures where

the matrix is less ductile [Figure 7(b)].

In Figure 8, the predicted loss moduli are plotted as functions

of VGCNF weight fraction for different data groups (L1 and

L2) at temperatures of 30�C and 120�C. Specimens prepared

using US combinations alone (L1) had higher loss moduli than

the specimens prepared using HS and HS/US combinations

Figure 6. The predicted response surface and contour plots for the loss

modulus as a function of VGCNF weight fraction and temperature for (a)

the L1 data group (grouped ultrasonication combinations) and (b) the L2

data group (grouped high-shear mixing and coupled high-shear mixing/

ultrasonication combinations). [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 7. Predicted loss modulus as a function of VGCNF weight fraction

for different temperatures for (a) the L1 data group (grouped ultrasonica-

tion combinations) and (b) the L2 data group (grouped high-shear mix-

ing and coupled high-shear mixing/ultrasonication combinations). [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8. Comparisons between predicted loss modulus of the L1

(grouped ultrasonication combinations) and L2 data groups (grouped

high-shear mixing and coupled high-shear mixing/ultrasonication combi-

nations) at temperatures (T) of 30�C and 120�C. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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(L2) at the low temperature. However, at 120�C, the specimens

prepared using both data groups demonstrated marked increases

in loss moduli. A comparison of Figures 7 and 8 shows that the

loss moduli are far more sensitive to variations in temperature

than to changes in the VGCNF weight fraction or mixing

method. These results underscore the matrix-dominated behav-

ior at elevated temperatures.

Consistent with the approach used to assess the storage modu-

lus, Table VII may be used to select qualitative factor levels lead-

ing to the desired loss modulus. For example, a combination of

oxidized VGCNFs, no dispersing agent, and US (factor level

combination in row one of Table VII) may be used to maximize

the loss modulus. Such insights would not have been possible

when employing more traditional ad hoc or one-at-a-time exper-

imental strategies. To further validate the RSMs, nanocomposite

storage and loss moduli were calculated at the intermediate

temperature of 70�C. The predicted storage modulus (2114

MPa) for a nanocomposite containing 0.50 phr oxidized

VGCNFs (plus dispersing agent) prepared using high-shear mix-

ing fell within 5.6% of the experimentally measured value (2240

MPa). Similarly, the predicted loss modulus (101 MPa) for a

nanocomposite containing 0.25 phr oxidized VGCNFs (no dis-

persing agent) prepared with ultrasonication was within 1% of

the measured value (100 MPa). Based upon the RSM, the latter

combination of formulation and processing factors will maxi-

mize the loss modulus.

As an aside, the damping coefficient tan d (i.e., ratio of loss

modulus to storage modulus) may also be treated as a separate

response or simply evaluated using eqs. (2)–(6). The tan d func-

tion provides valuable information regarding the dynamic prop-

erties, dissipation, and glass transition temperature (Tg) of the

polymer nanocomposite. These results underscore the utility of

RSMs in determining the combination of formulation and proc-

essing parameters leading to optimal nanocomposite properties

over a range of operating conditions.

SUMMARY AND CONCLUSIONS

A designed experimental study investigated the effects of formu-

lation and processing factors (including temperature) on the

storage and loss moduli of vapor-grown carbon nanofiber

(VGCNF)/vinyl ester (VE) nanocomposites. Response surface

models were developed and used to predict nanocomposite stor-

age and loss moduli as a function of five independent factors:

(1) VGCNF type, (2) use of dispersing agent, (3) mixing

method, (4) VGCNF weight fraction, and (5) temperature.

To maximize the storage modulus over the entire 30–120�C
temperature range, specimens should be prepared using high-

shear mixing and a VGCNF weight fraction of �0.40 phr. Fur-

thermore, use of either oxidized VGCNFs or pristine VGCNFs

with dispersing agent will lead to similar improvements in stor-

age moduli. Similarly, to maximize the loss modulus, nanocom-

posites should be fabricated using �0.25 phr of oxidized

VGCNFs and ultrasonication.

The current study demonstrates the use of statistical design of

experiments to explore complex interactions between formulation

and processing factors affecting the viscoelastic behavior of poly-

mer nanocomposites. Such interactions cannot be assessed in tradi-

tional one-factor experimental studies. The results of the statistical

analyses can be used to establish factor levels leading to optimal

material behavior. The response surface models developed in this

study may be used to tailor the viscoelastic properties of VGCNF/

VE nanocomposites over a wide range of service environments.
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